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By Francis B ..IIildebrand - — .—

.-

SIJMM&?Y --,--

A least- squa~es procedure ad-a~ted.%o ~umeri&~ ‘
calculation is presented for .~he approximate so>ut ion
of ihe Prandtl liftin~li. ne e~uat ion. , Sufficient. da$a
are tabulated to permit a solu”tion of the equation by
purely nwhcmical methods for an arbitrary symmetrical
variation of the chord and the angle of atta~k.- In
addition, modified procedures are formulated for. the “
analysis of wings in which the spanwise variation of -
the chord or angle. of attack is discontinunq.s, ..-Zhe
methods proposed are illustrated by expl~cit numeric&
analysis of rectangular wings without ,.tw$_8tand with
linear and. quadratic twist, a tapered wing. ,wi.th round”ed””
tips and partial—span fl.~ps:,and a rectangular wing with
a cut-out . Comparisons are made. in several cases with
the results of other procedures. .
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The computation. involved in the procedure. i.gpn—
tirely mechanical and is conveniently carried out .on a
computing machine. The accuracy attaigOL. ip a s.QIUk_i.Pn.
using the tabulat.e.d.data should be ,comparable to the
accuracy of the given wing data i.n all practicaz c:a6.=e&sZ.
‘while the” time required is considerably lass than ~hat r.—. .---
required. by””more elaborate procedures , such as tho=e OZ
Lotz and 3etz, and only slightly greater than that r6—
quired by less exact. methods ~ quch as those_ .of Glaue~t
and, Tani, While the modified analysis ,app.licable to .a
wing with a discontinuous angle of attack or chord r-
quires a small amount of addit i~nal comput.atioDfi_<t is
probable tihat,the resultant acc~racy in such” cases covld
be ;~t.tained by $hejLo&z -procedure only after. a ~erf
lengthy series of calculationqt _..
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II?TRC)DUCT 16N ~~

.

The distributiori of lift over .thb s~an of a wing, -r
in uniform motion is determined., according to the Prandtl “
th’eory of the lifting line, as the solution of .a singu-
lar i.ntegro-diff erent ial equat ion the .mathemat ical com- *

plexities of which are $uch-th~t “exact solutions have
,,

boon obtained only in very special cases. While several
..

methods have been devised for ohb,aining approximate eolu—
ti.ons to this equation, it is felt -that a new procodure
based on a method of least squares which was presented
in reference 6 may be oi?practical interest. .-.A-

—

In the usual procedures’ an approximation to the lift
function is assumed .as the sum of a finite number of ap–
propriate approximating,functions with undetermin~d cogf–

ficionts, after which the coefficients are “dotorminod in
various ways so that the lifting-line equation is approxim-
ately satisfied, Whilo it might be expected that tho
datormination of these parameters would be nest efflclontly
accomplished by a method of least squares, tho only a-
plication of such a method known to the writar (roferoncs2)
was not well adapted to numerical computation ,for arbit-
rarily varying chord and angle of attack. In a$ditlo~, ““
the singlo case tr~ated .w,asthat of awing with discon–” ‘- ‘“
tinuous angle of attack,. for “wh~,ch-the proctidur-o as--given
in referonco 2 failed to givo satisfactory results.
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The purpose of the presentpapor Is to preeentt p.:,;;.
leaat-squares procedure in which the major-part of fhe’
numerical calculation can be readily c,arried out ‘on a
computing m_achine ,_and in which the amount of” labor i“n–
volved is not d~~endeqt upon-”~he- nat-ure.of-%he variation
of the chord and the ,~ng”leof att~cka 6ince all the
previ~us. procedures are not&bly inadequate “for the analy-
sis of -wings with discontinuous sp”anwiee variation of
angle of attack or chord, an explicit treatment of 13uch-
cases is included.
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This investigation, conducted at the Massachusott~ @

Institute of Technology, was sponsored by, “and conducted
-.

tilth iinancial assistance from, the National Advisory i“
Committee for Aeronautics’. ~...
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SYMBOLS

spanwise ooord.inate in units

(Y = a at the rOOt, Y = +3

span

chord

root chord (c(o))

chord divfded by root chord.

ang3.e of attack

dynamic pressure

of the half span

at the tips)

—

section lift (per unit length along span) .

section lift coefficient ( t/Qc)

auxiliary lift function (c+% 5 1/W@

profile constant (dcl/da)

dimensionless constant (+cR/4b)

coefficient of total lift (L /qs .)

angl~ ‘o-fa“ttack ccriesponding to appro.xtm”ate lift_ .
distribution

.-
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#

MATRIX NOTATION

Ro~sentatf~n. of sets of linear equati.bns. - In this b
.-—

papc3r a sot of linear equations is represented in a con-
densed form. Thus , for example, the formal equation *

A. A=

aoc) alo ,.,

-1-1

ae:.

ao1 all = al .,. . ...,’
a&

,“,.
ale az

will IJo used to represent the cosfflc’ients of three
linear equations in the two para~.etgrs. +0 and ~1,.

of which the first is,,

Mat’rix rnultiplication.– A rectangular array of 1.-_—
elements is called a matrix. Yor the present purposes
it will bo convenient to define two types of matrix L
products, — .—

Tho first type, which will be called the A.kaZ
~oduct, is illustrated by the following axample:—-

Co I - ‘ ,alo

i I
coaoo coq)

c1 w ao1 all = =laol C1.all

Ca a02 a’lz czaoz ca~la
1

In goacral, the star product of a one-column matrix:of
m elements into a matrix having m rows and n .d
coludns will be defined as a matrix having m. rows and
n columns , wherein each element is tho pl-oduct of tho
corresponding element in the original m by”n matrih ‘Dythe ‘a

.eIoment of the one-column matrix which lies in its row. *

The definition of tho dot ~~oduct of two matd.ces
may bo illustrated. by the following example:
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In general , the dot product of. ;*HO
.L.-. .

rec.ta.ngular matricgs
having an equal number,. of rows”,.will“be dsf.inod as a

.

matrix wherein the element in the j+h ro—w and the -
column is the algebraic sum of all Pro~uc?S .9g. S9rZ.!?&__...
spnding elements in the j-th

.-
column of the first ““factor

natrix and the k–th colunn of the second factor ma#r ix.-
(This product is equival,en~ to th,e convent tonal matrix””
product of the transpos-b of the first matrix into the
second matrix. )

—. —.

..,’ ,, .-.,,. ..-,-

SOLUTION OF.”THE LIFT1tiG-LINE EQUATION 3Y A METHOD “ “,-. . ..’-- — ..=.
L. .....A -. ~..=,......_,.-
03’ JL%ASy’SQU~-ES ‘.”:---

.—.-.-— “-””-—--..=“.

. —

According to the liftin~~”in e”””theory, t-he l“iit “.
—

1(Y] per unit span acting on an airfoil is determined
in terms of the ‘chord . c(y)’ and the angle ..of.attack ‘ “’
u(y) “-by.t~6 info”gro-dtff eietitial Qq”tiation “ . .- ,: :

.. . . . ,---- -...:-.. L-1.

{
;.. . -1“i...’;.:- ‘-’, -

t(y) =
f

~*(y) qmc~.~(~~..- * _i d~ y–l-l
.}

“Q ~,

L.
(lay

—.—.

and tho boundary con-di$ioas ‘- -,‘;
.— ----

whoro y is a spanwise coo,,rdinate“measured from the
root in units of tha hal”f sp,an .3/2, C*(Y) is the
ratio of tih.o chord to the root chord,

“. .Ci(~.) .J-).-. .,.
. . . .c& ”.”,:.

,..,

“((’2)

~ ..“isr.tllO.,,,dyn~iG pressure , q is a .p.r?~,tle..~ons~.mt.,,,..

(–&u~\ “ ,’and ““,
“:+s’the dim ens ~;nl es-~“~~~6t;rit d“efi~”e~” -

*CL)’ -.’”+ .--— T.—-+ -— ——— ---. ... ..- ..-,+:..” --. —. .. .

by the equation
,,, . . . . . .. . ,-, =

u ,8*
v=~”y (3)

.



6 NAOA l?ech.nical lfo,te N-6. 9-25 ~.

Tho int .ogral”ayp,.p&i$irig...~nequ.atto,~.(1),.iB not ,% proper
intograi, %ut is to %6 aesigried its Cauchy principal
value, according t.o the definition.. .. . ...”.,,

If the no; at ion . .

,,. [4’)

is introduced, equation (1) can be written in the form

(5)

Th~ usual’ method of obtaining, an approximate 8olu-
tion to %his equation consists In assuming that F(y)
can be approximated satisfactorily in the range [Y]< I J
by a finite series of- approprfa.te functions... .

N

so that equation (5) becomes

(7)

wher e

(8)

and in then deternin”~ng’ the p:arametsrs A.n by requiring

that equation [7) ba a true equality at N ~rbitrarily
chosen yoigts (reference 1). This procedure thus leads
to a set of N linear equations -.

r
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k=l,2, . . .
‘J “

In ‘the N undetermined parameters An.

(9)

A more elaborate procedure consists in determining
the parameters by requiring that the integral of the
square of the difference between the tws sides of equa—
tion (’7)

~
over the range .[y] < 1, be a m,inin~. (ref---

erence 2,-:.. ,.

1 N

.J[Z
1

2

Anon (y )–&(y) dy = min’inum (lo)
L%’: .

n=l

Equatin~ “the partial derivatives to zero leads “igairi to
a set of N linear

N
1

7fAn
d- -1

n= 1

#&(

equations

-1”
y)@n(y)dy =

1
@p(Y) h(Y)d.Y

1 _- 1. . . .. . ?.- (, (11)

P=ls2t**.*~ J
s

which. serves to detertiin”e the constants “,/Ln.” ““a. .

In order to avoid the integrations involved in
squat ions (11) and reduce the approximate solution of
equation (5) to a purely muaerical process, there is
here presented a.mod.~fication of the least square pro-
cedure which has been used previously in connection with
other pro blens (reference 6). This nethod consists
basically in approximati~g the in-begralin equation (10]
by a sum of weighted values of the integrand$ so that
equation “(10) is replaced lIy the condition

&

‘~ “[f 1

~.. .+- _ ~- –. L_ ~

Bk ‘~” A&’@E(yk)–a(yk) = “tii~nimum ‘(12)

k~’1 n“=l -..-.

wher e Bk is the integration coefficient associated

with the value of th6 integrand at the .poin’t yk..

Zquatioms (11) are now replaced by the following “set of ....
N Ii.near ‘~~uafions:

.
“, —

,/
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M

?~

.N. . .,

An ‘k~p(yk) @a”(yk) =
I

Bk”tip(yk)ffi(yk)

n~l k=l k=l
}

(13)
P =2,2,’ . ..N

/

With the notation of the preceding section, the
coefficients of this set of equations ‘can be written in
matrix form

(14)

where the row and column indices are k and n, re-
spectively. It follows that the coefficients in equations
(13) can be conveniently obtained by first writing the
set of equations i..

37

~ An @n(Yk) = ~(yk)
n=l

}..

(15)
k=l, 2, . . .’ M

in matrix fonm, and by then forming .t.he.dotitproduct of
the auxiliary matr!ix

1“Dk ~n(yk)II
into both..sides of the ~sultant formal equation.

While equations (15) are of the same form as equa-
tions (9), the points y.k now correspond to the weighted

ordinates in equation (“12), so that the range of k is
arbitrary. Thu S , in place of satisfying equatio~ (7) .
at a number of points, N, equal, t.o the number of un-
determined parameters, the present procedure satisfies
this equation as nearly as possi%~e at an arbitrary
number of points, M.

Since equations (13) aro homogeneous iu.the weight-
ing coefficients Dk, these coefficients may be chosen
as any convenient multiple of the actual integratio~
coefficients. Also, it may be desirable in certain
cases to interpret equation (12) otherwise than as an

—

.



NACA-.Tschni.cal No”te No.; 9.25 9

.
.

approximation to pgUati On (10). That $,sl in place of .. .
requiring that the mean” sauare “of the difference le~ween
the two s~des of-the liftin~line equation he a minimum,
it may be desirable to require ‘that the equation be morq .._ ,...==
nearly satisfied at some points than at others. The.
coeffi.ci.ont,s D~ are theq of the nat,urtiof l~influence
coofficionts[’ an~ may ‘be determined by magnifying cer—
tain of the integration coefficients ‘in proportion to
the ,dogree of .satisf.actiop desired aL& corresponding in-
tervals along9;the:_sy.an. - “... -:

If the com~u$~d values ‘of the parameters are suk
stitutod in the-left-hand sides of equations. (15) the
values of the angle of attack ~ corresponding to the
approximate l~t distribution specified by equation (6)
are determined at ; M points along :the.6za. A, compari-
son of this angle—of—attack distribution with the pre-
scribed distribution a will give an indicaticm of th~
degreo of .apprqxim,ati.on attained ‘in the solution”.

OUTLINE Or THE PROCEDURE FOR NUMERICAL SOLUTION .

OF THE EQUATIOti. . . .::.”, ,....
. . , ... . . .

. ., , ,- . — .-. ..
. ..>

.,
Iri this section a“procedure involving a fiv~terrn

approximation to F(y): is” explicitly dwvelop~d for the
case when .c{y.) a-~:d a(y) are symmet.~i:ca~.”wi”.~hrespect ““
to tho wing root. An analogous procedure tiarftie developed
for the treatment of the case of an anti–symmetrical
angle of attack. : ,.

,,

It is convenient to choo~e the approximat@g_fun~
tioris. Qn of equation .(6) so.that the functions defined ‘-

by ~ho intogral”s “ , . . “.-. ... ..__:. : .,

,.
have a simple analytical expression and are re~lar in
the neighborhood of the wing tips (y = +1). Such func-
tions are, in general, characterized by the property

.,
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, .

~ 1
9=(YI ‘“ (Const.. ) “(1–y=) 2

/

(16)
y 4+1 -.

where n Is a pogitive integer. In addition, ,the ●

functions ;~fi””lshould be of a form readily adaptable

to the approx~mation of the function T, the character–
istic behavior of which usually is known.

In the present procedure an approximation to Y(y)
is assumed in the form

. .
‘..Wlth the exception of the

3

+ fi~ ) A..n Yan (+7)
n~~

first term, the approxi-
mating functions a~e conventional ones employed ~ise—
where. The cooffici.ent of 33, which is of the form
required by equation (16), was originally chosen for use
in cases when a(y) has a discontinuous first derivative
at tho root (e.g,, in the case of a symmetrically linear
angle of attack), since the contribution of this term to
the integral representing the induced angle of attack,

has a discontinuous derivative at the root (Y= O), whilo
the function itself has a continuous derivative at this
point , The function was, however, retained for use in
the more general case since it
a~proximating functions, being

$~!w~~~ th~ functions ~1-y2
figure l.)

With the approximation of
line equation (5) becomes

complements the other
intermediate in behavior

and yadl–ya . (~See
a

equation (17) the liftin~

*

?
.

?
.

r
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+!3{’’2’0’(+)+= [’”+’a’a+A4”4+A”’

.. ----- - -,. . .,. . . . . . .-....

.s.(+(y ) [Yj <1., ... . .

For %he ~~proximtit~ “~.ntegkation”-indicate~”
(11) nine points ,Yk are chosen, equally,

. .. —

(18)
. .

--
.

in .equa*ion
spaced ever

‘the i“nt8r%al os Y:< ii SO. that “Yk= k/8, ; 0 : “-

“k = 0,1, c2, . . . 8. “ If equat iom (18 ) is ev~l~ated at
these points , nine linear equat ions in the five param~ ““
“ters are. ,obtained the coefficients @f which ..arewritten -
in mat”rix form in “equat$on (19) .

,.... . .,

.

.
.

... , .,

. . ,.

:1 .,. .

. . .

.,.

.

.

.

.,

,...,

—

. . .
. . .

., . . . -.
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B

.00000

.04326

.1289’7

.23018

.32924

.40897

.44’739

.40452 “

Ao

1.00000

.292ZXL6

.96825

.92702

.86602

.’78062

.66144

.48412

Aa “ A4.-

.00000 .00000

.01550 .00024

.06052” ,00378

.13036 .01833

.21651 ● 05413

.30493 .11911

.3?206 .20928

.37066 .2837,8

+

● 00000 1
● 00000

.00024 !

1!
.00268

.01353’
I

.
b

04653 ‘

1.11772 ,

.21’727

-1.00000 1.00000 –.50000 -.12500 -.06250

–,60’730

–.214(30

.17810

.57080

.96350

1.35619

U?48%9

2.14159

1.00000

1,00000

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

-.45312

–.31250

-L W’822

—:95000

.67188

1118750

1.79688

2.50000

.

–.14722 –, 06894

-.19922 -.09309

–. 23706 –.14521

-.18’?50 -.20312

.05200 –. 17322

.61328 .18160

1.65747 1.34811

3.37500 4.06250

=

\..

a(o)

a( l/0)

a( l/4)

a(3/8)

CL(l/a)

~(5/8)

Z( 3/4 )

ffi(7/8)

x(l)



,
.

The elements in the last row 6f.”the Second matrix
all zer”os, un,less the chordt~p”ers. to zero .et the
at least “as rapidly as .fi-Y2 .: :Ig‘q~:e:.!hg Wi:g
proxirnat”e.s.au elliptical plan form near the tips,
th~se’ elements ,hav.e an equal non-zero va.l~e ~hic~
be”determin. e~ in”a- simple manner. If a ‘constant...
detqr”mined so that , in the immediate neighborhood
tips ~ . . .

.. . .

C(Y). ...,,
‘.~ ex~~

. .-i-
the”n these elemt$ntis atie to Ii-tiassigned” the value

.

. .

.

-.— . .

“’:(20)
-.——

.-

l/A.
While cases in which the, chord tapers to zero more
rapidly than .~. “involve c,~’tainrnathemat i.cal dif–
ficultias, it is- ~robable ‘that for. wings with rounded
tips the’ q~r or..igtr.odup.6d bY u.s.in~a til? aPPr o~.i.~.a!i~?!
of the form given in equat”ion (20) would not be Great.

If now the ;-alues of the chord and angle of attack
are known at the nine poi.~ts,.alo~g the span, and if M
is prescribe~, in the formequat’ion (29’)“’can be put_ , ,----

.-

1. -,. ,.
.’ -

B i“. A? ..:....
hi “.

b. ..a”oo ‘~:a2g...“...? “aE”o’‘-

bl aol a.~l....... a61

b2 ‘a(%’” “d.’ “ ‘“-” a&’ .22 .......
. . . ..,..... . ,..’ ‘.“— L . .
● ● . .*

.

where, for example,

a.

al

a2

.

.

.

.

ae

—

i-”
.-

(21)

l)o=-~ ‘“ ‘b”’.=‘%%–“60730w””.“ . .
drp

.[ -1
J

(22)
= .06052

a ,31250w ,...;. aeg= _ +4.06250~za
c*(~./j4J’ ...... .“J, .: C*(Y). y=~

., --~~$ . - ,.””.’-”.. .,: -.
-a~ = a(k/8)’

,---

(23)

●
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In accordance with the results of the preceding ‘
section, the coefficients of the linear equations (13)
are obtained hy fokming the dot product of an auxiliary
matrix into both sides of formal equation (21). Th!s
auxiliary matrix is formed by multiplying the ,elements
of the k-th row of the left—hand matrix of equation
(21) by the weighting coefficient D~ associated with

point Y@ .in equation (12). If it is required that the

mean square of the difference be-t”weenthe two sides of
the liftin~line equation be as small as possible so
that equation (12) is to approximate equation (10~,
these coefficients are to be “proportl”oh”al”to a “i@”tof
integration coefficients, The best results have been
obtained, in’general, if coefficients proportional to
those of Simpson!s rule are used (for a detailed dis–
cussion, see ref-Orence 6, pp. 32.9-323), so that

Do = D~ = 1/2

DI ‘=D5=DT= D3 = 2-

D2 =D==f)s=l
1

and the auxiliary matrix is ●f the form

+bo +woo &aao ......... +!@130

m;“a 2 aol 2azl ......... za~$

:bz.’ jam: 1
““a22 ● “*’*’”” R 62

● ✌ ✎ w

. . . . ,

* . # b

.

(24)

%“

*

-.

*
.

(25)

.
.-

If the dot praduct of matrix (25) into both sides
of equation (21) ig formed, the coefficients of a set of
five linear equations in the five parameters B, Ao, ....A~
are obtained the solution of which, in connection with

●

✎
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equation (,17), d.eterrninea t~e lift dis~r~bution over t-he
span of- the wing-” “The amount of nuruarical work inrolved
is considerably reduced if use is made of the fact that,
as can be shown,’ th’e matrix of coefficients in the final
set of equations is symmetrical wit$,”respect to its
principal diagonal.. .,” : “ ._ ,..,-,-F. .

The data requ!i.red to’ “comptite ~“e values of .F(y)
at nine points are tatiulated in the” second matrix cf .-

equation (19) (if the elements of the last row are re- ---

placed by .2.eros.). Thus, for e“xample;

F(0) =’AO :’--- )
~( 1/8) = ~m04326B * 0.i9216Ao + “0.01550 & : 0,00024 A“q-1

(

(26)

. . . . . . . . . . . . . . . . . . . . . . . .

F(l)=o J,
. .

With the auxiliary function F(y”) knfiwn, -th= l-ift dis—
tribution t(y) is determine& from the equation .-

., . .. -
,’.. ...

L(y)”= liq:c~ I’(y)

,.- . .
and the section lift coefficietit” c~(i) f611ewti fr”~”m

.
the equation ... .,,

,, -.
e“= 1

cl(y) = h ~.F(y)
w . ,., .

If”’ L “is the total lift act”ing “on.tke wing and ~
is the projected area of the wipg, the coefficient of

“ ttital lift, CL , defined by the rela~ionship.

L
G~=--

qs’ . “’A=”- ““:
.—L----

. .. ,.. --... . . .. .
is giyen,by the formula . .-. — —.. —

,..,.

J

b2 1
—

CL=2~— P(Y) ay -
s .

-i ‘

or, with the approximation of equat ion (17) ,

.
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o~ = ..+
[
+-B+ A. ++ Aa+,@,4+I& &

1
(27)

An indication as to the accuracy of the solution
is obtained if the ,va.lues‘of the angle of attack ~
given by the left-hand sides of the equations repre-
sented by formal equation (21) are compared with the
prescribed values of a; for exampl”e,

=k =bk3+aokAo+. . ●+a6kkesak (28)

It may be mentioned that in place of using the ap-
proximation of equation (1’7), the liftin~line equation
may be first transformed by the substitution

after which, if an approximation to the function u(y)
is as=umed of the form

3’(y)”=B(cos@e)log ($+%fliYJ )1,+ An sin n e (17a)
g“cosej “

equation (18) is replaced by

..

●

.

#

1——
{

B (COSae)lOg
.( }1

1 + sin 9: + An sin n e
c*(cose) \cos 0) )

and the present least-squares procedure is again applicable-

In the preceding developments it was assumed that
the profile constant m does not vary along the wing
span; that is, that parallel chord sections of the wing
are geometrically similar. If this is not the case, tho
effect of varying M can be taken into account if in
equatiou (5) and the” subsequent equations the function
C*(Y) is replaced by th~ function

.

.

*

.
.
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4

.

-.

.

.

.

and the deftnit,ions of. the conetant p“ ‘and the func-
tion $(y) are modifiedso as to read”

.“
(38)

T.(Y)
Y(y) = (4a)

. . ,. % ‘R CR
. — .—

where nR is the value of “fi at the root.
.,

. . .. .. . . .. .. —.. —...— --

‘EXPL lCIT SOLUT 10N FOR A“”RECTANGULAR WING

In order to illustrate the proce~ure. of the pre–
ceding section, a wing of rectangular plan form aqd as-

13
pect ‘ratio” ~ = m (*6) is considered. In this case, “~

. . ,,

equations (2) and (3) become. “ .-.
,, — — ..-

.. . -.
:., . ,,: . .. c*(y)-= 1 :’” ,

. ,.. . ,.. ,
.. . .-. , ,.. . -G..;’;..i” .

,---- .—, . ..
and : “. . ::-. .. ..”,—--

v
1=—

. .4 ., ,” ”....... (30),.-, . .-. —
.. ,..

~ach element of the left-hind matrix of equa”tion
,(21) 5.s thus the sum of the corresponding element of the
second matrix of equation (19) and one-fourth the corre-
spmdi~g element .of the third matrix of that equation, so
that equation (21) becomes .-

‘. .—

3.”” A. Aa Aa
–.250’00 1.25000 -.12500 –. 03125
–.108s6 3~24216 -. OSj7’78 -%03656

–.07531 1.21825 –.01761, –. 04602

.27470 “ 1.1~702 -.11083 –. 04093

.4’7194 ‘ ‘1. ”l1602’ “, .27901 .ocj725

.64985 1s03062 ~.. 4’7290 ~ i13211.-.-..?._..

.78644 .91144 ,66893 ,36260

,84175 ,7’3412 ,81988 .69815
.53540 .2booo ●62500 .8-4375

Ae

–.01562

-i 01723

–-92304

–, 033~2

–.03~25

. ●00322

.16307

,55430
1.01562

●

a.

al

aa

a3

a4

as

as

a?

as

.—
-,

(31)

,
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The auxiliary matrix ‘is”now formed by multiplying
the elements in the k–th row of the left-hand matrix
by the weighting coefficient. Dk, as given in equation

(24). If the dot -product of this matrix into both Bides
of equation (31) is taken”, the following five linear
equations are obtained:

B A. .Aa. ~4 %

3.4’7075 4.19825 2.91636 1.84739 1.30533

II

al
4.19825 13.43179 3.09615 1.47864 .89447 am
2:91636 3.09.615 2.56410 1.77884 1.32531 = a3
1.84739 1.47864 1-77884 1.50586 1.26747 ad
1.30533 .89447 J..~25.3l .1,26?47 1.1617.6 a=....... .. .. .

where

1(32)

-.”12500 ,6%500 –.06250 -;01562 -,00781 f a~
-,21713 ‘2.48431 –,19556 –.07312 –:03446 al
.07531 1s21825 -.01761 -.04602 -.02304 aa
.54940 2.35105 .22166 -.08189 –.0”6745 aa
.47194 1.11602 .27901 ,00725 .–.03725 Q aA

1.29980;, ‘2.06125 .94580 .26423 .00645
.78644 .9114$ ,66893 .36260 .1630?

ir68349 1.46825 1.63975 1.39630 1.10860
.267’70 .12500 .31250 .42188 ,50781

w

(33) -.”

,
.

It may be remarked that the calculation of each
element in- equation (!32) involves only a single continu-
ous operation oh “a computing machin”e. For example the
coefficient of AS ()in the second row of ‘equation 32

was obtained as the alg~%raic sum of prcducts of corre-
sponding el&ents of the second column of. the auxiliary
matrix (the first matrix on the right-h’arid i“ide of
equation (33)) and the $.bird column of the left-hand
matrix of equation (3J.).:

. .’ -,

–(,62500)(.12500) – (2s48431)( .09778} - (1.21825 )(.01761)+.,,, . .

. . s,+ (s12500)(’.62500) = ‘3”,09615’

6ince the matrix ’on the left-hand si~e of e~uation (32) - .
is symmetrical, it was not ‘necessary”to computti the ‘
elements below itrs princiyal diagonal.

.



..

NACA T6chnica\ Note N.o...925 19

.
.

.
.

.

.

.

The solution of q,quation,s (.32) is also conveniently
carri.e~ out on ~ computing machine., the process being
considerably shortened i-faccount is taken of the symme-
try in the matrix of co~fficiehts. (See, for example,
referenco 5~), ,.,.. .. .-.. .

In the case “of a“uniform angle’~ attack, for which

a(y) = aT = constant, the right-hand matrix of equation

(32) as determined from equation (33), is found to be

11
4.’79185.
12.3635,7

a~ 3,’79199
“2.23562
1.61592

.. . . .

and the solution of equations (32) then gives
.. . ..-,,

B = -0.25469 aT A. = 0.82881 aT .& = Oo98119~
.. ,. .. .

)
- (34)

AA = +1.32373aT As = 1.36382,aT .

The coefficient ●f tqtal lift C; is determined by
equation (27),

.,.4 .

.

..-

,.., :(3L = 0.73065 h a~ ““--.-’”‘ (35)

,. .—.- . . . . . . . . - .... . . . . =-.

In table 1 “and figure -2(a) the aux’ili”ary lift func-
%ion Y(y) (computed from equations (26)) is.-compared
with the corresponding solution given. by Glauert (refer-
ence. 1). This solution’ was obtained-by assuming a foufi
term approximation to T(y)

.
of the form given in equation

(1’7a) .(omitting the first term) and by then satisfying
the liftin~line. equation ex~ct~y at four points, not in-
cluding the wing tip. The value’s of the left-hand side
of the ‘basic equation (5) (computed from equations (19))
are .cotipared with .t”he corresponding values determined
fr.om’the Glauert s~lution in tab~e 2. It is seen that
the Glauert sozution satisfies-the l.ifting.line equation
extremely well “exoept in the. imme~iate vicinity of the
wingtip where a largq deviation occurs, while for the
pDe~E!n$ solution the equation is reasonably well satis-
fied alo~g the span. The two lift distributions agree
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very closely, however , except near the tip of the wing,
and the Glauert lift. coefficient, CL = 0_72~ M C.LT, is

nearly j.dentical with-the result of” equation (35). . *

In the case of a svmmetr i- J,inear Q @ titac~,
for, Irhich a(y) = CtTIY] , ~the right-hand matrix of equa— a

tion (32) is found to be

3.57658
5.43746

aT 3.03389
2.033.0-2
1.55018

and equations .(32) BAVB ,

B = 0.11229 aT AO = 0.16’731 aT .Aa= 1.25057a

4
‘A4=

<b~
–1.67588 aT ‘ Jie = 1.48110 ay J

The coefficient of total lift is then

9

CL = 0.33270 m aT

The variation of the ,func”tiion Y(y) is presented o
in table $ and figure 2(b) in c~rnjarison with the
Glauert solution, while in table 2 the left-hand side of
bquation (5) is evaluated for the two solutions and com-
pared with the prescribed right-hand sj.de. ln this case
the actuaZ angle of–attack ~ -corresponding to the
Glauer% solution deviates appreciably from the prescribed.
angle .of attack a ‘both near the root (y = 0) and near
the ti~ (Y = 1).. The root’ deviation, which is due to ,,.~“
the fact, that the curve rep’resent.ing the function al(y)
has a discontinuous dariv’ative at .y’ = O, is decrea$ed
in the present solution by the presence of the first tern
in the approximation of equation. (“17), and the tip d~via– .
tion for the present. solution is alse less pronounced.
Corresponding differences occur between the two lift dis-
tributions, and the Glauert lift coefficient~ CL= 0.320EIu~

differs from the result of e~uati”en (37) by about 4 percent.

,

.

.

r
—
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In the case of a quadratic an~l~. @ attack, for
-..-. ...

which a(y) = aT y=, the~rtght-hand matrix ‘of equ–tition

(32) ~akes, the form ,. . .. ......... .-,,..., .-. ...

The solution of equation
.

B = -0.20524 ;T” A.

A&= -1;00759

(32) iS fougd. to b?
...

= “b.0666s” cci’J Aa =

\

1.20613”a~
—;-- .,

.>.
~T &= 1,13356 a~ I.

.-
.. ! .: —.” -

0.2060’7 rnaT
..”--,

,.

and equation (27) gives
. .

CL =

Yhe “lift distribution correspon’di”ngr”t”othis solu—
tion is presented in table 1 and figure 2(c) while in
table 2 the functions E and a are comy.~,red., This
problen was not considered hy Glauert. The “lift dis–
tri%ution in this case is more. nsprly concentrated at

. the wing tip and the naximum..lift value is only about

42 percent of the naximum value gor the corresponding
wing r{ithout twist. Also, a higher degree of approxi-
mation i6 iniicated %y the agr~qment ~<..th~-tyo, sides
of the liftin~llne equation. ,.

.. ...
.,, .-. ..--’ ...... ..... .-...

MOD13’lED PROC3DUR.E FOR WINGS WITH DIS’OON~INUOIJS

,“
ANGLE”,OF ATT&’

.. +.-

It is known that at a point of discontiriufty in” the
angle of attack the Ii.ft-distribution curve has an in—
finite derivative, “S”Othat ‘an approxim,at-ion of the type
used in equation (17) could. not be expected to give an

accurate result. In such a case, in order that the right-
and left-hand-sides of equation ‘(5) haye’.the ~ame dis—
continuity at a point, the function l’(y) must he con-
tinuous but must have the property that the integral

.

.—

(37)

.
f“



22

(3$)
.“

-1

has the same discontinuity as the angle of attack, d.

AS can be verified in a~ elementary manner, the
function ?.. .

satisfies the equation ‘

L .,. .

and has the crrrect behavior at the tips, since
.. . ,.

ra(Y) “ *Ja-Jk-y2 y,-+~>
. . ..t. ..,. ..:,...,.,...’.”... .,.,

,. .,:.,.,.,,. ., ...,A.::.~.. ....
,,. .,. k. .

Thus ~heimtegral. ~ .. ---- -“ - - ----
.,... ●,...,. . .,, .. . . ..

‘..
. ,.

f

‘M.. -1S.La3“-;’ ”’.. ‘
. ‘TT -1 “ay” .Y–n ,.- ..... . .

,,. .
is .pi.ecewise constant in .theint,erval. [Y[<l ,and has
a jump of magnitude ww , at the.poigt. y= a. suppose
that a(y) is continuous except for finite jumps of
magnitude Jn at the points y = an.

. . .. . .,---

tx(an+)-a(a,q-)= Jn {42)

Then, if the function

P(y)=~ 7“

.’
Jn ra~Y.(.y ) (43)

‘~%. ““!

is’dhef.iced,”””;lt f-ollo’wsthat the expression

.
.—

--

i
,“

.

.
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. . . .,. ...+.r.s .“-.l
.

“.’,.”,.1. ... ’.,
.. =..*

. .

a(y)-+ f
dP d~ ‘“-’”-

-1:””Ctq y–n,, .,:,
i(ii)-;,\... .-. -.-”

-, . . . . . -., ,., .: ’:.
,- . ..

-: --- . ‘.-.-.-:., !,,.

-.

. . . . :

is continuous. ‘“

..-

,. ...
whe’re ‘

.. . ..

:,

Fo(.y) ~. ~ 1.—.-:
fC*(Y) n . –1

:.... .
.=..,=.-. . . .
.:

---.--. < -..,, ----- .: ”’””.:---

.

----

—
---

E uation (46 ]“’ is ‘formall~ eq~iv~leri%’ ;O equation (5) if
.-!.-..-=

7a Y) is re-placeQ. PY a*(y) :an&, s~ince a*(y) is con-
tinuous S’the solution can be carried out ‘“as outlined in
the preced. i.ng sections. . ; . . .;...

.,

In calculating the total lift coefficient , % r the
value of the int egra-1 .:. .-.

$..?’* ,-, :.-; ?....7?--::
.

‘.>.- ...- —.
,. “1

!
~lr~(y)dy= -,’y ~ (48)b .. ~;-,-.~.i “. .. -“- .~l’+. r;..+. ,, ‘ .’ .””=. - ,-. -. -

5.sneeded. ~.
.

.... . ___
,, ,.-,

,., ;, . ... ,t,.?q.
..--.:,-----. ...-.’-,-- ----- .> ..-:-.:~:----- -1-2’..

,. :;As an exam”ple, stippose.that the’ iiileron deflection
of a wtng is such that

rO -l<y<–a

a(y) =
{

1 –h&y <a” (49)

f .—
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In this case equation (43) becomes

P(y) = --&
{ }
r=(ti:)- ra(Y)

or , ,, ,.. .... .

(50)

it is f.ou’ndthat

{ I 1,=— ——
l-r

cos-la] + ,,[1 - + (IT- ““cos-~ a)] -a<y<a

1-[--+-Cos-al +cl. - +- (n–cos–la)l L3<y<l

f

.& . l(U? dq ,. ::. “. ;, .....’. :.”

n _Ldq y-q= “~ ‘“ :-- ,..

-“{ .“

%.~?~-za-~,: .,~ls y;<-a .,,..

& &Qs—l a=

1-r

-a~y<a

. .
2

..,.-.
~ cos-l a—1 a<y<l

., ..:. . . .. .. . . . .

.(=Ct( y)- 1- )+-cos-l ,a
..

,,

Thus, finally9 equation (47) gives ‘

P(y) ( )-+-Cos—=aLx*(y}= ~-... 1. , .

(51)

.

(52)

.

.
.

.

.

r
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EXPLICIT SOLUTION: FOi. A TAPXRED WING WI$H ROUNDED TIPS

AND PART ML-SPAN YLAPS
,, .... .“”

AS an illustratio~ of the modified procedure, a
Wing analyzed in reference 4 ~S now considered. The
variation of the ch-brd ratio c(y)/cR is represented

in figure 3, while the following additional numerical
data are. given: “ .

\

.
.

,. b = 0.1919 ““
b2 “ “:-
— = ide

. .. s,”
( 53”) .

In the immediate neighborhood of the wing tips , it is
found’ that , approximate ely, , ,,

(:

C*(Y) ~ 1.64~1 - ya Y —>+1

and” it follows from equation (20) that ... _ .
.-

AII’angle Of attack o“f-1-rad,ian-fro-m O ““to~-.4~89”””ahd0 from’
0.489, to. 1 .~s- pre~cri~ed, sb ,~h’at, in th6 notat”i’o~ of”””the

. .
examplo of the p.reced.”ingsectibu~ . .... , I _ __ —

.,. .. ,. . .
a = 0.489 (55) -

!I!hoequation to be solved is then

To(y) + ~ 1 ~. d~

f
—— = cL*(y)

C*(Y) =“ -1 dq y–q
(56)

Where
●

Fe(y) = P(y) – l?(y) (57)
.. —

and P(y) and a*(y)
(52),

are defined in equations (50) and

T
..“: -.

,:
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The ‘func.%ions C*(Y)? P(y) and a*(y) are tabulated.
at the nine points considered in table 3,

If the operations indicated in equation (19) (whero
\

a is replaced by a*) are carried out, equation (21)
takes the form “

B A. AZ Ad A~

-.1919b 1,19190 -,09596 -,02399 -.01199
-,07040 1,25021 -.07042 -,02800 -.01323
.10621 1.29847 .00920 –.03391 -,01759
.31’748 ‘ 1,33285 .14545 -.02293 -.02469
.54852 1,34659 .33665 -.03619 -, oaQQ4

[

.’77976 1.32734 .57247’ .18323 ,03444
,97608 1s25020 .82318 .45254 .22316

1.05476 1.05256 1.00377 ,82257 ,64496
1.02073 .80166 1.08951 1.25’742 1,38935

1.85269
1.94784
1.94088
1.76657
1.09D23
.49026
.0527~

-. S?629
-.3252’7

.

‘(58;

The coefficients of the final set of linear aquations,
obtained by taking the dot product of the auxillary matrix
defined in equation (25) into both sides of equation (58), .

are then found, .

B. A. Aa ‘ A4 Aa

5.45683 7.35230 4.66690 3.11236 2,3.1514
7.35230 18.51243’ 5,71837 3.14707 2.12795
4.66690 5,71837 4.lli95 2+92894 2,26282
3*11236 3.14707 2.92894 2.42110 2.05002
2*31514 2=12795 2.26282 2.05002’ 1.,85Z66 I

1.76261
15.54154

= .62091
-.51871
-,60’723

,

(59)

and the solution of the corresponding set of equationg ia

33 = 4.20498 A. = 1.40506 Aa = -9.94467 -

In table 4 and figure 4 the auxiliary lift function .

F(y)i determined by the equation .

F(y) = P(y) - Ye(y)
.

is presented in compa~’lson with a solution given by Pearson

(referenoe 4), Z%iS solution was obtained by using a ten-
term series of the type given in equation (17a) (omitting

r
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the first term) and determining the parameters by a
method given by Miss Lotz (reference 3). l?or further
comparison there fS inolqded in. figure 4 a SOluti On o~ _
tained by the present least-squares procedure with an
approximation of the type of equation (1’7), that is,
without. using the additional approximating function .-

P(y). While–the Pearson so~ution agrees closely wifh
the present solution over a large part of the span, it
appears that~ even with a ten-term”a pproximat icn, the
correct behavior of the lfift curve cannot be satisfacto—
rily approximated near the end -of the flap except by the
use of a term similar to the function P. The values
of the angle of attack corresponding to the present so>u-
tion and to the Pearson solution are compared with the
prescribed values of a in table 5 and figure 5. ‘“’

r

HODITIED PROCEDURE TOE WINGS WITH DISCXMTINUOUS

CHORD PARIATION

Suppose that the angle of attack a(y) is continuous
and that the chord c~y) is continuous except for finite
jumps at the points y’= an. Theri the fun”ct$on ~(Yy/c*(Y)
has corresponding discontinuities of magnitude - !!~~( an)
wh ere

Yn
[

1--—
C*(an+)

Hence. since a is

. . . . .
.

1 1=O*(an+)– c*(an–) t61)
c*( an–) C*(an+)C*(an—)

continuous, the
equation (5) must be continuous and

f
$’ dT dq.

_=dq y–q

left–hand side of
the function

must have discontinuities of magnitude +YnY(an) at the

points y = an. ,.. . -.,,

If the function l?(y) is written in the form

I’(y) = Fl(’y) – Q(Y) (62) “

-.

,
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..—.--.

(63) .%
,.:.

~nd n (Y) is defined by equation (39) , the ccnstants

. u~ can ho determined so that the..le.f.$-hand side of e~ua-

tion (5.).is cotitinuous and consequently the function
~~(Y) has a finite derivativ~ inside the “interval [y\ <l.

l?or, accordiug to equation (40), if equation (62) is in–
troducad into equation (5) the left–hand 6ide. of” th.~ re-
sulting equation has, at each point y = am~ a dificontinui-ty

of magnitude.

It follows tha”t the’dis continuitf”es will disappear if the
constants IIn satisfy the equations

where .

.. .
il, m=n
L

(65)

....

,.-
.

.

The constants Kn are-thus .deter,ioined.,from ~quation

(64) as linear combinations of-the values of Fl(y) at

the points of: discotii.inuity, “
●

Qquat ion (6) can now be ~rf.tten in the fora .—

r “1
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Since the function li’z~y) has a finite derivative inside

the interval : /yl ‘cl; an .“approxirn&*iO-n to ~~(Y) can be.
assumed In the” f ●rm gi.v”bn “by equat ion (17) and the term
in brackets in equation (66) becomes a known llnear combi-
nation of the parameters 3 aha A*a. If this term is

evaliiatb~ at the points yk with the help of equation

(40) and if the. s~t-,of coefficie~ts ~f B and Aan in

the resultant e~ressions is mitten as a matrix, the
matrix equation replacing equation (21.) iS obtain?d by
subtracting this matrix from. the left-hand side of .equa—
tion (19)* The ~east-squares procedure can then %e a~”
plied as before.

As an example, suppose. that the cherd variation of a

symmetrical wing has dis continuities of equal magnitude
and opposite sign at the points y = +a

.
and write

Y=
c*( a+) - c*( a-) = _ c*(-a+) - C,* (-a–)

(6?)
c*(-a+) c*(-a-)C*( a+) C*( a-)

Then equat ion (6~ becomes

USC), since I’(y) ,is an even function of y and since

17a(a) = 17_a(-a) = o

ra(-a) ..=-l’_a(ti) = 2a ldg a!“ (69)

equation (64) becomes ---

so that J.

-. .. _ -.

1 --

“.. ,.
—

.. ”-”
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Ka=-K_a=—’
~v~

Y1 (a)
2Yaloga-n M-.

Thus-equation (68) becomes
*

[
YYl(a) ~

)
n~ y Tl(a)

,

Q(y) = —. ,,,-.._ ~r_a(Y) -ra(Y), “= —-- -P(y) (?’2:
‘“2 Ya log a–n~ 11~ -2 Ye, logs

wh er e 2(Y) is defined by equation (50), and the in-
tegral equation (66) oan be written in $he form

~l(Y) 1.”’1% an

f
-—+--—— — P(Y) Fl(a) = CL(Y) (73)
c*(y) n _l dn Y–n

...-..,-..
where’ .,

1
~vy

[
P(yj v dP dv

P(Y) = ———
J

——--—+———
}

(74)
l-r~- 2 Ya log a UC*(Y) TT_l dq Y- TI

,,

31XPLICIT SOLUTION FOR A RECTANGULAR WING WITH A CUT-OUT

.,

As an illustration of the procedure of the preceding
section, the effect of a rectangular cut–out on the lift
distribution over a rectangular wing with an original

b
asyect ratio of ,magnitude —= m without cut—out is

c -.. —

analyzed, The length of-the cut-out is taken to be one-
quarter of the span and the width to be one–quarter of
the chord (fig. 6). In this case there follows

.

(75)

.

.

—

.

.

L
and equation (67) gives

. 7
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,. ,.

.
. r. Y=+-

,. .

Xron equation (50.), ... ...+

31

(76)

and fron equation (51);

IY[ <+
(78)” -

.

If ~l(Y) is as~umed in the fern given .by equ~tion (1’7),
.

.

.

.

.

there follows “’ .
. . -.

I?z(a) = I’l(,-&)= 0.12879B -I-0.~6825ho”+ 0:,0605~iLz

-t-0.003?8A4 + 0,00024A=
.,

The function B(Y) of equation (74) is evaluated.. at
the ~-~ints considered in table 6.

The nine li~ear equations involved-in ‘the least–
squares procedure are.to be obtifned by evaluating (73)
at the nine points yk = k/8, k= O, S, ’2,”... 8..

With the approximation of equatioti (17”)~””the”matrix ~f
coefficients of the unknown parameters B an a A=n in
this set of ,equa,tions, “ ‘.“correspondfng. to. t~e-left-hand
side of equation (22),. is. obtained as the”difference be-
tween two matrices, thefirst of which is given directly
hy t~e left–hand sitle,of eguat-i..on(1.?):. In the second
natrix, which represents the coeffi.oients “of the values

.. . .

of the third tern on the left-hand.sidq of oquatiop (73),

the elements in the” k-th row ake’tli~ productis of the
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.coefficicnts of tho parameters in equation (79) by the
quantity 8(yk).

The coefficients of the required nine equations arc
thus fo.urid.in the “form

B

-%-2449o
–,12560
.04424
.19912

.35128

.48?52

.59186

.63452

.40518

A.

.75651
,76602
.82172
.83092
.81698
.77392
.69876
.57466

.. .21474

-.12069
–.09526
–,01896
.(37988
.20800
.35474
.50264
“.61642
‘.47045

–.02512
–.02897
–, 03488
-. Q3Q90
.00536
.09908
.27201
s52371
“.63292

A=

–.01182
-* 01303
–.01730
–. 02530
-.02794
,00242
.12231
.41573
.76172

1
1
1
1
1
1
1
1
1

.

(60)

The coefficients of the final
are then found, by taking the

set of linear equations

dot product of the auxil~ary
matrix -previously defined into both sides of equation (“80),

B’ ho A= -

1.97915 “2.30991 1.66370 1.04882 .?40?1
2.30991 6.55541 1.75463 .88374 .54525 I
1.66370 1.’75463 1.456?5 1.00542” .74857 =
1.04882 .8837.4 1.00542 .84761~ .7131’7
.740’?0 .54525 :74857 .71317 .65352

●

✎

.

3.45862
8.71573

I

.’

2.77811 (81) “
1.6?224
1.21165

and the solution of this sot of equations is determined,

B = -1.452~7 ho =.~a29708 A 2-.

}

= 2.59819 -
(82)

~~ ~ -2.38087 Ae,= 2.03971

In table 6 and figure 6 of the auxiliary lift function

.

.

I’(y) “1
and the function =,= cl

.
are presented numerically

-.

C*(Y)

and graphically. For the purpose ofl.comparison there is

~
,--—

I
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.
.

.

.

.

included. in figure 6 a curve reyresent ing the variation
1~f the function cl for the same wing without cute.ou$t
T

as determined in a preceding section.

●

CONCIIUSION

The explicit procedure given in this paper, using a

f iv-tern appraxinat ion and a nine-point weight ing syst en ,
should give results with a degree of accuracy con-p&rable
to the accuracy of neas’urenent of the physical data of
the wing in all pract ical cases. More nearly exact solu-
tions could be obtained by retaining a gr.qater number of 1

terns or by using a nore elaborate weighting systen. .—,.. .—
●

While the present method is not a nethod of 6“uocessive
approximations, an indication of the accuracy attained can
be found in the following two ways:

1. As mentioned in the text, if the computed values
of the parameters specifying the lift function z(y)
are substituted im the left—hand sides of the nine linear
equations represented by formal equation (21) the re—
sultant values of- the angle of attack corresponding to

..

the function E can %e compared with the. corresponding
prescribed values of the angle of attack. .,

2. It can be shown that if the last term in the ap-
proximation to the function F(y) is not retained, the

final set of four linear equations _given by the least–

squawzs procedure for the determination of the four re-

maining parameters is obtained from the corresponding

set of five equations in the original five parameters by
.—-

deleting the coefficients of A6 and omitting the “last
equat ian. If the resultant set of equations is solved,

.—

a comparison of the lift distributions corresponding to
the four–term and five–term approximations will afford
an estimate of the effect of retaining additional terms.

The complete solution of a problem, including the
tabulation of values of the functions r(y) and a(y),
can be carried out in less than two hours by a competent
coamputing~machine operator.

.

Massachusetts, Institute of Technology, . _
Cambridge, Mass., February 1943.
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).sent ilolution ![Glauer’~ 8olution
1. ) ..-

I
B= aT

o 0.8288
.125 ,8262
.250 .8243
.375 .8169
.500 .7932
.625 .7478
.750 .6828
,875 ,5826
.9325 .4’736

1 0

‘0.1673 0.0666
..1898 .0’757
..2462 .1075
,..31’71 .1562 .
..3820 .2121
;4272 i’2686
.4498 .3236
.4362 .3567
.3760 .3235

0 0

0.832
.830=,
.822
.809
.786
752
:695
.577
.450

0

0.132 .
.157
222
:307
.385
.435
.451
.421
,355

0

TABL3! 2 .– COMPARISON OF ANGLE 03’ATTACK Z CORRESPONDING TO.

THE LIFT! DISTRIBUTIONS 03’ TABLE 1 WITH Prescribed ‘.
. ,.

ANGLE OF ATTACK a

rY

Y2 Ia= a,

B/aT

Present
iolutiol

Present

?301ution

0.997
,986

1.003
1.0,22
1.018
.982
.954

1.030
.952

G&uert
&6Ml*ihq

‘1.000’
“1.000
1.000
1.003

.995

.995
1.005
1.020

.692

I Present
Solutiol

Glauert I -

0.000
. 05a
.19”6
.37’6
●544
.646
,729
.851.
.861

0. 50U
.125
.250
.3’75
.500
.625
.750
.87“5

1.

–0.,002
.004
.065
● 159
.265
.376
.526
.’?90
.962

c)
.016
.06,2
.241
.250
.391
.562
.76”6

1.

0
.125
.250
.375
.500
.625
.750
.875

1.

1.0
1.0
1 ;0
1.0
1.0
1.0
1.0
1.0
1.0

0.054
.109
.233
.385
.521
. 62;0
.711
.894
.974

.

#
.,
.
. .

—

●

✌✎



IYABLE 3.— JaUXIfiIDLY DATA FOR TAPERED WING .

.—. —

0
.126
.250
.3’75
.500”
.625””
.750
.87’5

1. “

C*(Y) CL(Y)

1. 1.0 ‘
.9Z75 1.0
i8750
.a125 ‘ N
.7500 ‘0.
.6875 0
.6250 0
.5625 0

0. 0

. . .. . ,.

2.17796
2.13103
1.98288
1.69962
1;06538
;54692
.26128
;08380

o“

ct*(3’)

1.85269
1.94784
1.94088

,1.7665”7
lo 09523
.47025
.09278

-.17629
--32527

TABLE 4 .— LIFT DISTRIBUTION FOR TAPERED WING

Present solution Pearson solution
c

y — cl Y
c

m cR — clmc I1.—

0. 0.7729 0, 0.’7576
.1250 .70’77 .1564 .7033
.2500 .6588 3090 .6535
.3750 .6162 :4540 .4451
43’75 . .5463 .4890 ,3589
:5000 ,3057 .5225 ,2743
.5625 .“1619 ‘. .5878 .1460
,6250 .1101 .707% .0864
.7500 .0744 .809d .0306
.8750 .0425 “ , .891Q .032a

1, . Q. . .9:511 ..0224
, r .

,. , .. . . ..
., . .

. .,,,. r ,.. ..
. . ...,..’ , .- .. . .

●

✎

.
.

.

.

.-
.

1
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TAELE 5.– COMPARISON Ol? ANGLE OF ATTACK = CORRESPOND ING
,

TO THE LIFT DISTRIBUTIONS OF !TA3LE 4

WITH THE PRESCRIBED ANGLE OF ATTACK at .. /

Present solution

Y I =(y)

o
,125
250
:3’75
.500
●625
.?50
.8-”75

1.000

1.157
.936

1.008
1.100
–. 023
–. 058
.029
● 020

–. 036

a(y)’

1.0
1.0
1.0
1.0
0
0
0
0
0

Pearson so
I

Y a(y)

o I
.1564
.3090
● 4540
.4890
.5225
.58’78
.’70’71
.8090
.8910
.9511”

1.043
.94’7

1.058
.’724
.505
.288

–.010
.063
.021
.046
,044

1

!

1
.ut ion

a(y) ●

1.0
1.0
1.0
l-r#

A“.
o
0
0 “,
o
0
0

. . . .- ------
TABLE 6.– NUMERICAL i)-4TAFOR WINi+ WI~H CUkWT

,. -,.. -:

I
Y

t-
0
.125

i -,-
.250

● 3’75

I

.500
. ●625

,?50

L

,8?5
1

P(y) S(Y)
c 1

c1
~

y Cz

1.’7062’7 0.44512 0.9339 0.9339
1.59911 .42638 .9234 .9234

1:13364 ,~~~g~ ;9?50
{

.9760

.7320
.62280 .05355 1.0240 ,7680
.37225 .02069 1.0272 .7704
.20701 -.00098 .9781 .7336
.09497 -.01568 .8965 .6724
.02492 -.02486 ,7659 .5744

0 -.02813 0’ 0
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1.0~ \

.8

.6–
● __–q=rloG(y)

—Cp. ynw=w

.—.

.4 /“
/’

/’
,/

.2 /’ A /

/’
/ /

d i

/’ /
{ K

o ~ “‘ ‘ ~
.2 .4 .6 .8 1.0

Figs . l,2a

lJ

Figure 1.- The approximating funotions y
/

~D and. Y%og(l+m IYI).

.
,

.
.

.

,

.
.

. LJ
(a)Oonstantangleofattack(a= q).

Tigurea (atoo).- Liftdistributionsfora“reotangularming(b/o= m).
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.0 ““””-””--”--

-—-
-Prod mhtiin

-T-

,6
-----wM!UddJtlCfl . . . ... .- ....-.., .

.4

(b)
o

a- *
!J

(b) Symtnetrlo811ylinekr angieof attaok(a. q Iyl).

.
.

.
.

,
.

(1 blook= 10/30R)

\

u

(o) Quadratlo angle of attack (d- ~y2).

Figure 2.- (Oonoluded).
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●
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.
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u

Figure 3.- Ohord variation of tapered wing umed in example.

1.0

—Presed Astion

.8
—.— Led-qxmesalutknmthautterm

m~ InducedvI#c of at+ack
-———Pearson solution

\

.6
i

‘ \’> \
I

.4 .

\A

.2

~. .-
0

*****$* 1
Y

—
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Figure 4.- Lift distrlbu%ion for a ta~eral wing wi%~ rounded tipe and partial-ep~
flaps (b2/S = 10).
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1.2-

t)
1.0 \

eooa~s~ ~[utlon]\
.8

Figure 5.- Comparleon of ugle of attaak oorrevmding to lift diatrl-butioneof
fi~e 4 with prescribed angle of attaok.

-—.-

Figure 6.- Lift distribution for rectangular wing with outout (b/cux = m, ha/S= ~m )


